
DS 01 Course syllabus

Annotations will be typeset in red. Red footnotes are also annotations and not part of the
syllabus proper.

Key information

Instructor

Name: Josh Laughner
Pronouns : he/him/his
Email : jlaugh@caltech.edu
Office: 126 Linde+Robinson
Office hours : Mon 3p-4p

Tue 5p-7p
Thu 10a-11a
By appointment

Class

Lecture: 130 Linde+Robinson
10a-11a MWF

Website: courses.caltech.edu/ds01

Textbook : None. Readings and other
resources will be posted
to the course website.

I have not had luck yet finding a CS textbook that is well-tailored to scientific programming.
I’m looking into data science books, but for now plan to assign individual resources as needed.

Course description

DS 01 is designed to teach you the fundamentals of computer programming in Python, with
an emphasis on using it for data analysis. No prior programming experience is required or
expected. We will start with the absolute basics, then cover some tools available to work with
more complex datasets, and end with how to balance writing maintainable and reusable code
against the rapid evolution of what your code needs to do while in the midst of an analysis
project. DS 01 is a project driven course.

Learning objectives

By the end of DS01, you will be able to:

1. Understand the purpose of literals, variables, loops, functions, modules, and packages
2. Use Python to identify underlying patterns in datasets of any size
3. Create a reproducible scientific analysis
4. Include good programming practices in their data analysis
5. Identify when it is appropriate to use rough “single-use” code and when it is better to

take time to refine their code.

1

courses.caltech.edu/ds01


DS 01 Course syllabus

From the standpoint of backwards design, it’s clear that my highest priority for the students
is for them to learn how to write good code, since #4, #5, and arguably #3 all relate to
that. It may seem strange then that this idea of good code doesn’t really show up explicitly
until the last unit in the schedule at the end. The challenge is I doubt students will really
internalize the importance of writing good code until they experience the cost of writing bad
code. Plus, I’m not assuming no prior programming experience, and simultaneously learning
syntax and how to conceptualize a solution to a problem as an algorithm are strenuous enough
without adding standards of coding on top of that.

To compromise, I’ve tried to organize the activities and assessments so that some of the ideas
of good programming practice are present throughout without being explicit. For example,
the first unit project is a library of functions, encouraging code reuse, and when we introduce
functions, we’ll go over what role they play in coding. The final project will also incorporate
a lot of emphasis on reusing code from earlier in the semester to give students the experience
of trying to reuse probably bad code. The idea is to give them that visceral sense of why
this matters.

Course welcome

Welcome to DS01! Our goal this semester is to help you learn how to use compute pro-
gramming to carry out data analysis in your favorite STEM field. Data analysis is a critical
skill for any STEM discipline, as more and more graduates are expected to be able to sort
through large datasets efficiently and discern the key patterns or underlying mechanisms
behind the data.

This class is divided into three units. In the first unit, we will focus on the fundamentals
of programming. This includes both the technical elements (the syntax that the computer
requires you follow) and more conceptual ideas (how to translate a process into an algorithm).
The second unit will introduce tools geared towards data analysis, such as plotting, fitting,
reading/writing data files, and using more powerful data structures such as dataframes and
arrays. The final unit will step back from the details of programming and data analysis
and look at good programming practices to follow, when it’s important to write good code
vs. get something done quickly and messily, and how this ties into expectations of scientific
journals to make your code available for peer review.

Help with resources

As a programming class, you will need access to a computer to complete the assignments.
A laptop that you can bring to class is ideal for the in-class activities, although there will be
ways for you to participate without one. If you do not have reliable access to a computer,
please let me know so we can make arrangements for you.

2



DS 01 Course syllabus

When I was in undergrad, there were several buildings on campus that had open computer
labs for students. I hope this will still be an option in the future, as well as support to have
laptops available to loan to students who need them.

Getting help with the class

I’m assuming that the students in the course will be in their first two years, so some of them
may not be familiar with how office hours work.

At times throughout the semester, you may feel frustrated, overwhelmed, or just stuck. That
is normal. Your TAs and myself are here to help you. There’s a number of ways that you
can get help from us:

Office hours: are a time when you can come talk to us in person, no appointment needed.
Just come by during one of the times listed as office hours and we’ll be happy to help. My
office and office hours are listed at the top of the syllabus; for the TA office hours, see the
course website. If none of the listed times work for you, feel free to contact us to set up a
time to meet.

Email: You can also email myself or one of the TAs for help directly. We’ll do our best to
get back to you within a working day. You can help us out by being clear and concise about
what help you need. If you’re confused about something from lecture for example, telling
us what you did understand, what you didn’t understand, and pointing to the relevant slide
numbers in a few sentences will help us help you faster.

Online resources: There are many online resources where you can find help as well.
stackoverflow.com is a site where anyone can ask a (usually computer-related) question
and get answers back from the community. geeksforgeeks.org also sometimes has nice
examples for individual functions available within different languages. Usually searching for
“python” plus an error message or a few words describing what you want to do in your
favorite search engine will return hits from these sites. There are of course many other sites,
but these are ones I visit myself. When you find help on these site though, make sure you
understand why the piece of code they suggest works, don’t just copy-paste.

Each other: I strongly encourage you to seek out help from each other as well as the TAs.
Often someone who has just learned something can describe it in a more helpful way than
someone who has known it for a long time (look up “expert amnesia” if you’re curious).
Also, teaching someone else something is one of the best ways to cement that concept in
your own mind. By all means review the material or work together on homework with your
friends (but see the collaboration policy below).

3

stackoverflow.com
geeksforgeeks.org


DS 01 Course syllabus

Collaboration policy and honor code

While I want you to all feel comfortable working together and helping each other, I also expect
everyone to complete their own assignments. The assignments are designed to reinforce and
give practice with the concepts we cover in class, and if you don’t do them yourself, you
won’t get the full benefit of the class.

For assignments and projects, I expect each of you to turn in your own, original work. That
means:

• Do discuss the course material (lecture, readings, or supplemental) with each other.

• Do brainstorm together about how to approach a problem on the homework.

• Do help each other debug code (but the author should try themselves first).

• Do not send code to each other.

• Do not copy-paste code that someone else sends you.

• Do not copy-paste solutions to the problems that you might find online.

Caltech has a campus-wide academic integrity policy and honor code, as follows:

• No member of the Caltech community shall take unfair advantage of any other member
of the Caltech community.

• Plagiarism is the appropriation of another person’s ideas, processes, results, or words
without giving appropriate credit, and it violates the honor code in a fundamental
way. You can find more information at: http://writing.caltech.edu/resources/

plagiarism.

• All instances of plagiarism or other academic misconduct will be referred to the Board
of Control for review.

Feeling sick?

If you’re ill, please stay home and get better. All lecture slides will be posted, and I or the
TAs will be happy to meet with you to review those slides once you’re recovered. If you need
to miss a day with in-class activities (see the subsection under Assignments), email me to
let me know you won’t be in class and we will arrange a make up activity.

4

http://writing.caltech.edu/resources/plagiarism
http://writing.caltech.edu/resources/plagiarism


DS 01 Course syllabus

Assignments

Assignment Percent of final grade

Homework (all) 50%
In-class activities (all) 10%
Unit 1 project 10%
Unit 2 project 10%
Unit 3 project 20%

Homework

There will be 10 homework assignments over the course of the semester. Late work will
receive 1

4
credit. However, as long as you turn in all 10 assignments by the last Friday

of classes your lowest two homework grades will be dropped and the remaining 8 will
equally contribute to your homework grade. I may grant extensions if there are extraordinary
circumstances (such as a family or medical emergency), contact me directly to discuss this.

The homework in this class is designed to reinforce the skills you learn in class and to build
competence with each skill needed in order so that you’re ready for the next task. That’s
why it’s important to complete the assignments on time, so that you have a firm foundation
for the following topics.

In-class activities

Some classes will have practical components, supervised in-class work. Being in class and
participating in these activities will count towards the 10% of your grade for in-class activ-
ities. These class periods are marked with a “P” type on the schedule below. Similar to
homework, you may miss one with no loss of points and can make up two on your own
outside of class, no questions asked, if you contact me before the class. If you need to
make up more than that outside of class, please schedule time with me so we can make sure
your learning goals for the course will be met.

Projects

There will be three projects throughout the semester. These will be larger programs or data
analyses that will require you to combine everything that you have learned up to that point
in the class.

• Unit 1 project: create a library of useful functions as a package. You will be given a

5



DS 01 Course syllabus

list a 10 desired functionalities (for example, compute a relative difference) and need
to write a function to handle each one.

• Unit 2 project: this project will focus on analyzing a large datasets to identify trends
or anomalies or to compute useful statistics. There will be several options available in
different fields, and you will be able to choose the one most interesting to you.

• Unit 3 project: will be an extension of the second project and will expect you to
incorporate some of the library you wrote for the first. This will require you to dig
deeper into some of the correlations or causal relationships between variables in your
chosen dataset.

The Unit 1 project is intended to get the students to write a reasonably large chunk of
code, but broken up into parts that are not interdependent, hence the library of functions.
The functions are also going to be small enough that (for the most part) they don’t need
broken up into multiple functions, for example:

• reldiff: compute a difference b− a relative to a or the mean of a and b.
• absmax, absmin given a sequence of values, return the value farthest (closest) to 0.
• bin_1d: bin y by x and return the result of a desired operation (count, mean, max,

min, etc.) on each bin.
• wrap_string: wrap a string so that individual lines do not exceed n characters, split-

ting on whitespace

The other goal behind this project is to get them to create functions that they’ll be able to
reuse for the later projects, possibly even the homework. This is to introduce them to the
mind set of how reusing code can really save time. This will be the main assessment for
learning goal #1, since it will require them to put together all the programming basics to
create.

The Unit 2 project is geared towards getting the students comfortable working with various
types of data files, e.g. text, netCDF, or field-specific formats, as well as plotting and fitting
data, and understanding what the result tells them. I’d have probably 3 topics to choose
from, ideally selected so that the majority of students in the class would have one in or
adjacent to their field. Examples from atmospheric science could include calculating the
Niño index or the NO2 anomaly over China this winter (it’s way, way lower than usual).
This will be the main assessment for learning goal #2.

The Unit 3 project will, ideally, extend the Unit 2 project. The goal would be to get
the students to reuse their code from both the previous two projects. For example, if
they calculated the Niño index in project 2, they could look at how that correlates with
rainfall/temperature in the Americas. The second part of the assignment will be a short
(∼ 1 page) write up from each student describing when they followed good programming
practice and how and when they didn’t and why. I’ll also have them submit this as closely

6



DS 01 Course syllabus

as possible as they would if it were supporting a journal article—including getting a DOI if
I can find a way to make a temporary/dummy DOI.

I’m also trying to set this up to make students experience the cost of poorly written and
documented code. Because they have to go back and document their Unit 2 project for the
last homework, but not their Unit 1 project, but use both sets of code in the Unit 3 project,
my hope is that they’ll have the visceral experience of “how the heck does this function
work!?” for their Unit 1 code when they have to use it in Unit 3. That will definitely be
something I need to evaluate in the student feedback at the end of term, either as part of
course feedback or part of the writeup they submit with the project.

This will be an assessment of learning goals #3–5.

Course schedule

This section assumes semesters, rather than quarters or terms (even though Caltech is on
terms).

One pedagogical point that stuck with me is that a new professor will have very limited time
for course development, so I’ve only included a limited number of classes mostly or entirely
centered on active learning, since these take more time to develop well. Most of these involve
pair or group work to solve a collection of problems and then reporting out what they did
to solve the problem and why to the rest of the class. Having clear roles (e.g. one person
edits the code, one person records the thought process and reports, the others focus on the
programming) will definitely help. It would also be nice for students to rotate roles, so
that different students get to be the programmer/reporter/etc., but I think the activities are
spaced too far apart for them to remember what role they did last in the present form.

Ideally, there would be many more activities so student would be better able to rotate roles.
This would also be benenficial since the only way to learn programming is to do it. However,
this is designed for a pre-tenure position that doesn’t have time to build a fully flipped class
yet. I would adapt it over time as I learn about the student culture at my institution.

Class type: the “type” column indicates whether a class is lecture (L) or practical (P).
Practical classes will consist of active in class activities which will contribute 10% of your
grade. Bring a laptop to practical classes.

Type Topic Assignment due

Unit 1: programming basics

Week 1 Mon L/P Course introduction, Python installation

Wed L Jupyter notebooks vs. scripts

7



DS 01 Course syllabus

Type Topic Assignment due

Fri L Literals, variables, variable types, operators, and
comments

Week 2 Mon Holiday HW1 (identifying
code basic compo-
nents)

Wed L Code blocks (if, for, while)

Fri L Importing packages; finding and understanding
documentation

HW2 (using code
blocks)

Week 3 Mon L Thinking like a computer 1

Wed P Thinking like a computer 2

Fri L Practical example: simple physics model HW3 (packages)

Week 4 Mon P Practical example: simple physics model

Wed L Functions: definition, inputs, outputs, and variable
scope

Fri L/P Functions: when to use HW4 (algorith-
m/pseudocode)

Week 5 Mon L Code organization: modules and packages

Wed L Debugging 1

Fri P Debugging 2 HW5 (physics
model)

Week 6 Mon Catch up/extra topics

Wed Catch up/extra topics

Unit 2: data techniques

Fri Arrays (creation and indexing)

Week 7 Mon L Pandas dataframes

Wed L Reading/writing text files

Fri L Reading/writing binary files and pickling Unit 1 project

Week 8 Mon L Reading scientific data: HDF5 and netCDF files

Wed L Plotting 1 (figures; axes; line and scatter plots)

Fri L Plotting 2 (pcolor, contour, histograms, multipanel
plots)

HW6 (data)

Week 9 Mon L Fitting data 1 (linear regression, regression types)

Wed L Fitting data 2 (arbitrary functions)

Fri L Optimization/minimization

Week 10 Mon L Advanced dataframes 1: fancy indexing, interpola-
tion, and times

HW7 (plotting and
fitting data)

Wed L Advanced dataframes 2: joins and groupbys

Fri L When to use what data structure HW8 (optimiza-
tion)

Week 11 Mon L Catch up/extra topics

Wed L Catch up/extra topics

Unit 3: good programming practices

Fri L Documenting your code with docstrings HW9 (dataframes)

8



DS 01 Course syllabus

Type Topic Assignment due

Week 12 Mon L Self documenting (readable) code

Wed L Breaking up code for readability

Fri L Enabling code reuse Unit 2 project

Week 13 Mon L Automatic testing 1

Wed P Automatic testing 2

Fri L/P Version control 11

Week 14 Mon P Version control 2

Wed L Isolating projects in environments

Fri L Publishing research code HW10 (project
2 docs and unit
tests)

Week 15 Mon L Fast or right?

Wed L Catch up/extra topics

Fri L Catch up/extra topics

Finals Fri Unit 3 project

Expanding on class topics & ideas for practical classes:

• Course intro/installation: overview of course goals and structure plus walking through
installing Python and Jupyter Notebooks on students’ computers.

• Notebooks vs scripts: describe the features of notebooks, contrast with standard *.py

script files.

• Literals, variables, etc.: cover the basic elements that make up any programming
language.

• Code blocks: cover syntax and uses of for and while loops and if-elif-else blocks.

• Importing packages: how to import additional packages to use. How to understand
their documentation.

• Thinking like a computer 1 & 2: trying to separate syntax from algorithm design by
going through how a problem must be described to a computer in pseudo-code. The
second period will be small group activities where each group is given a STEM-related
problem (e.g. matrix determinant, computing degree of unsaturation in a molecule,
etc.) that they write pseudo-code for and then explain their algorithm to the class.

• Simple physics model: join algorithm design with real syntax, explain how simple
kinetics equations can be modeled numerically to solve where a cannonball will land.

1After discussion with a CS lecturer, whose opinion was that introducing too many programming tools in
the first course students take is counterproductive, I decided I would rather get the students a firm foundation
in programming and plant a seed for version control rather than trying to stress this throught the whole
class.

9



DS 01 Course syllabus

The second period will have students work in small groups to implement this and check
it against the known solution.

• Function definitions etc: the basic syntax of defining a function, how data are passed
into and out of functions, and the rules of variable scope.

• When to use functions: discussion of when to use functions/the role they play in
programming.

• Code organization modules and packages: How to create your own modules and pack-
ages that can be imported into a notebook.

• Debugging 1 & 2: talking through a process for debugging crashes or bugs. Second
period will involve small group work (or pairs) to debug a simple problem then have
one or two groups talk through their process with the class.

• Arrays: creating and indexing Numpy multi-dimensional arrays

• Pandas dataframes: creating and indexing Pandas dataframes (similar to R dataframes),
pros and cons relative to arrays

• Reading/writing text files: how to open, read, and parse text files. Will cover both
manually parsing and using Pandas tools for .csv files

• Reading/writing binary files: how to open, read, and parse binary files. Cover “pick-
ling” which is a way of writing arbitrary Python variables to disk.

• Reading scientific data: how to read HDF5 and netCDF4 files, which are hierarchical
data formats especially common in earth sciences. Discussion of importance of open
source, common data formats.

• Plotting 1 & 2: covering how to make plots in Python. First period will cover the two
ways (function vs. object-oriented) of plotting in Python and basic line/scatter plots).
Second period will get into additional plot types and basics of combining multiple axes
into a single figure.

• Fitting data 1 & 2 explain how to do standard y-residual fits, RMA fits, and ro-
bust fits; discuss the difference between them. Second period discuss how to use the
scipy.optimize.curve_fit function to fit data to an arbitrary function.

• Optimization/minimization discuss the concept of cost functions and how to minimize
one, give example applications.

• Adv. dataframs 1 & 2: multilevel indexes, interpolating data, datetime indexes in the
first period. Second period will focus on SQL-like joins and how to quickly do group
and reduce operations, e.g. monthly averages.

• When to use what data structure: discussion of when to use lists, dicts, tuple, set,
arrays, dataframes, etc. as well as the importance of being consistent throughout a
project to avoid messily converting between types as much as possible.

10



DS 01 Course syllabus

• Documenting with docstrings: discussion of best practices for documenting functions
and modules.

• Self documenting code: best practices for self-documenting code; descriptive variable
and function names, whitespace, making intent clear

• Breaking up code for readability: go through rules of thumb for when a single function
should be broken up into multiple functions to improve maintainability and readability

• Enabling code reuse: how to distill problem-specific code into more generally reusable
code; general core function with problem-specific wrappers; how to recognize when to
take the time to write a general function.

• Automatic testing 1 & 2: how to write automatic tests to ensure that a function does
what it is meant to. Distinction between unit and integration testing, with emphasis on
the challenges for scientific code (i.e. change is expected in some cases—how to ensure
the correct change occurred). Second period workshop style class where students have
opportunity to write tests for their Unit 1 project functions, getting help from each
other, TAs, and me.

• Version control 1 & 2: introduction to what version control is and why it matters.
Basic tutorial on tracking changes in the code over time.

• Isolating projects in environments: concept of a Python environment and how to inte-
grate with notebooks, advantages of isolating research projects in individual environ-
ments.

• Publishing research code: how to organize your research project code so that is it easy
to upload in support of a paper; expectations of journals and the scientific community.

• Fast or right: discussion of when it’s important to take the time to build clean, main-
tainable code, and when it’s better to hack together something that works once for a
particular analysis.

• Catch up/extra topics: I’m virtually certain I’ll get behind at some point in the semester
and I want these buffers to not feel rushed. If don’t need the time to catch up, then
can use these for extra topics (e.g. xarray for multidimension arrays with labeled
dimensions/coordinates in Unit 2) or class workshop time for students to get help on
projects.

Homeworks:

• Homework 1: given individual lines of code, ask the students to identify what each
term in the line is.

• Homework 2: two parts. First, given a scenario, ask students to identify which of a
for loop, while loop, of if statement is appropriate. Second, ask them to write the
start of these blocks for various situations (e.g. loop while s is a string)

11



DS 01 Course syllabus

• Homework 3: have students import packages in various ways (import the package
itself, import the package but rename it, import a function from a package), then have
them use various simple functions from packages that we have not used yet to practice
reading the documentation and applying it.

• Homework 4: have students write out pseudocode (that explains the steps in the
algorithm but is not in strict Python syntax) for 3 problems, e.g. testing the Collatz
conjecture for any positive integer, multiplying two matrices, etc.

• Homework 5: have students finish a numerical model of a cannonball fired with some
initial velocity and position to compute where it lands. We will create the basics in
class, they will have to extend the model (e.g. implementing curved rather than flat
ground) themselves.

• Homework 6: given a text file, binary file, and netCDF file, students will need to read
in some of the data in the file and do some basic calculation on it (mean, standard
deviation, etc).

• Homework 7: using data files of some sort, students will need to make line, scatter,
hist, pcolor plots of the data. They will also need to fit linear regression to various
parts of the data and interpret the slope/intercept.

• Homework 8: Given a dataset, the students will need to create a cost function to
minimize to find the best combination of parameters. This could be trying to minimize
two or three types of non-orthogonal error, or choosing an apartment that is the ideal
balance between rent, commute, and living space.

• Homework 9: Given multiple datasets, the students will need to use the database-
like join and grouping operations available to dataframes to combine these datasets to
answer a series of questions. For example, given one table of apartment rents, one of
square footage, and one of median rents per square foot by zip code, the students will
need to match individual rents to median rents and analyze the distribution within
each zip code (e.g. is it a fairly normal distribution or long-tailed?)

• Homework 10: the students will need to take their Unit 2 project code, add docu-
mentation, and add unit tests to ensure small functions do what they are supposed
to.

12


